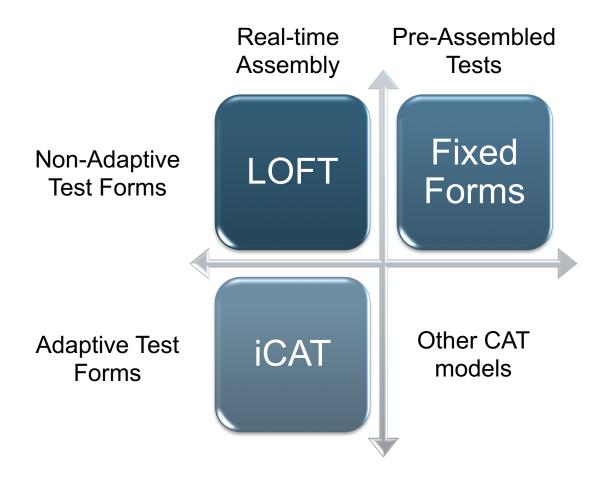


Comparing the Pros and Cons of Two ATA Methods for Delivering High Volume Pre-Employment Assessments

Li-Ann Kuan, Ph.D., Vice President, Assessment Services Garrett Sherry, Vice President, Europe Middle East & Africa Monday, September 9, 2019

Agenda

- Prometric Background & Experience with the Public Sector
- Introduction to Computer Adaptive Tests (CAT) and Linear-on-the-Fly Tests (LOFT)
- + Benefits of CAT and LOFT
- Things to consider what deciding to use CAT or LOFT

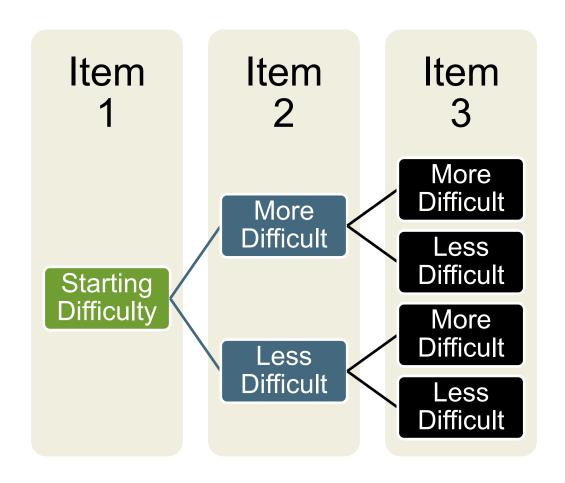

About Prometric

- + HQ Baltimore, USA, EMEA HQ, Ireland
- Over 300 Clients, Delivering 7M+ tests Annually in 180+ Countries
- Over 30 Years serving clients in the development & delivery of Computer Based Assessments
- + Working with Public Sector Clients in US, UK, Ireland, Europe & Asia
- EPSO 'ERICA' Algorithm introduced in 2012 (Modified LOFT)
- Adaptive Tests not an option for EPSO exams as all forms have to be build according to consistent specifications – same number of items, similar form difficulty

Classes of Test Assembly Methods

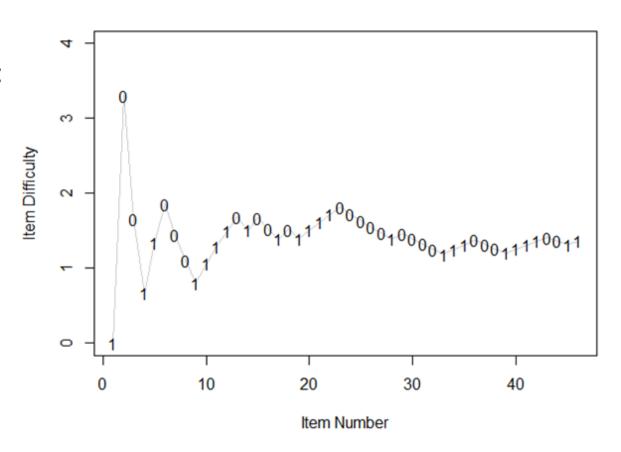
A Note About Fixed Forms

- + Fixed-length, linear test forms; employed by a majority of test sponsors
- + A fixed form typically includes:
 - A selection of items that meet content and psychometric requirements
 - A set of common items that allow for test score equating
 - Minimal overlap with other test forms
 - A set of pretest items (optional)
- + Preassembled ahead of the test administration date, allows for quality-control checks (e.g., enemy items, item exposure)


What are Computer Adaptive Tests (iCAT)

- Test forms that are generated <u>dynamically</u> according to predetermined content and psychometric requirements
- + Test is built in real time and tailored to each examinee's ability level
 - Each subsequent item is selected based on examinee performance on the previous item
 - Item must closely reflect examinee's ability level, as well as meet content and psychometric requirements
- Item selection is controlled by a mechanism called item exposure control which prevents the overuse of optimal items
- + Item selection stops when:
 - examinee's ability level can be reliably determined
 - the maximum number of items are administered
 - allocated test time expires

How CAT Works – Item Selection

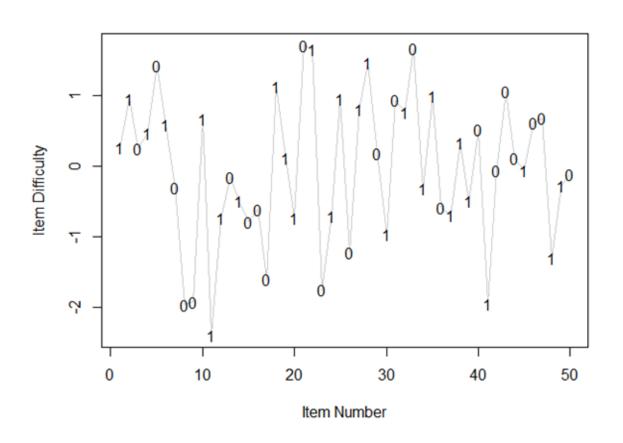


Copyright © 2019 Prometric. All rights reserved.

How CAT Works – Item Difficulty

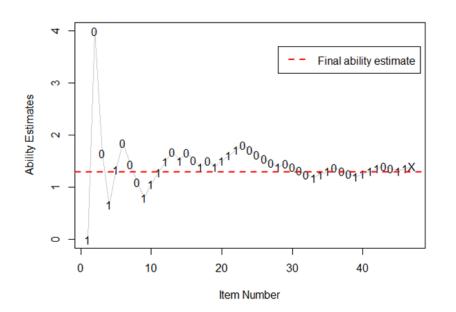
- + Each time a candidate answers:
 - incorrectly (0), the difficulty of the next item drops
 - correctly (1), the difficulty of the next item increases

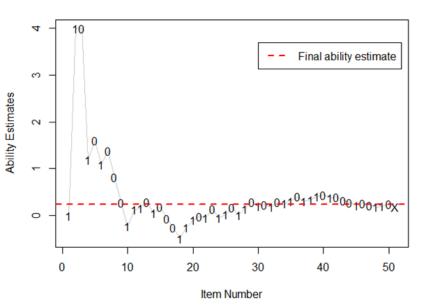
Linear-on-the Fly Tests (LOFT)



- + Fixed test forms that are <u>automatically</u> generated <u>in real time</u>, shortly prior to the testing event
- Items that meet targeted content and statistical requirements are randomly selected from an item bank
- Each examinee attempts a <u>unique test form</u> with minimal overlap with other forms
- Form overlap is controlled by a mechanism called item exposure control

How LOFT Works – Item Difficulty


+ Candidate's
successful or
unsuccessful
response does not
determine the
difficulty of the
subsequent item.



Comparable Ability Estimation

(For Different Exams)

CAT Ability Estimates

LOFT Ability Estimates

 The ability estimates derived from both CAT and LOFT demonstrate a similar pattern despite variation in the item difficulty

BENEFITS OF CAT AND LOFT

Copyright © 2019 Prometric. All rights reserved.

Benefits of CAT and LOFT Over Fixed Forms

- Improved security and decreased opportunities for cheating.
 - unlikely that two examinees receive same set of items
- Better usage of all exam items in the bank.
 - item statistics are kept current
- Automated test assembly.
 - a reduction in error due to manual form assembly
- + Low form-to-form overlap rates.
 - low overlap between forms, challenging for examinees to anticipate questions on exam

Unique Benefits of...

CAT

- Tests customized to individual ability estimates.
 - present examinees with items that are likely to provide more information about their ability, increasing measurement precision
- + Shorter testing time depending on stopping rule.
 - tailored to an examinee's estimated ability, more information is gained from each item, allows for shorter tests.

LOFT

- + Consistent test experience for all examinees.
 - all exam forms are built to the same test specifications (e.g. test length), maintain a similar difficulty and passing standard
- Model easier to explain to stakeholders

THINGS TO CONSIDER WHEN USING CAT OR LOFT

Considerations for CAT and LOFT

Size of the testing program.

 rely on IRT methods for initial calibration of items (and item selection during testing for CAT)

+ Size of the item bank.

 large banks required to avoid overexposure of items, ensure that intended test specifications can be adequately covered

Quality of the item bank.

- All enemy item relationships must be identified
- All items must be anchor calibrated using IRT
- All items must be catalogued to content specifications
- All items are up to date over time

CAT Considerations

Size of the item bank.

a larger number of items (>10x) required to generate ability estimates

+ Determining a test stopping rule.

 end after specific test length, time limit, or at desired measurement precision

Reliability of real-time internet connectivity.

item bank must be located in the test center driver during administration

Test-taking process.

examinees not allowed to return to items and review or change answers

Publicity and marketing.

 clear communication about CAT adoption – candidates may perceive testing experiences as unfair due to variable time or item stopping rules

Prometric's Perspective

- CAT and LOFT are two different methods of delivering tests one is not better than the other from a technical standpoint
- Given profiles of our clients:
 - Complicated test assembly requirements (i.e., enemy items, content and psychometric constraints)
 - Concerns with test security, disinclination to download entire test bank at test delivery sites
 - Limited resources to develop extremely large item banks
 - Desire to maintain high returns on investment, use all items in the bank
 - Desire to keep test specifications consistent; no need to keep forms short due to age of the testing population
 - Desire to allow examinees to change previous responses to items
- LOFT is a better option than CAT for Prometric's certification/licensure clients

CAT vs LOFT Simulations: Bank Usage

	Items (%)					
Hoogo Boto	LOFT		CAT			
Usage Rate	Precision @ 0.1		Precision @ <= 0.3		Precision @ <= 0.2	
65%					<1%	
60%					<1%	
55%					<1%	
50%					1%	
45%			<1%		2%	
40%					1%	
35%			<1%		2%	
30%			1%		4%	
25%	4%		2%		6%	
20%	2%		3%		6%	
15%	21%		3%		11%	
10%	44%		10%		14%	
5-<10%	15%		23%		32%	
1-<5%	9%		56%		19%	
<1%	2%	14%	2%	58%	1%	20%
0%	3%		0%		0%	
Total	754		754		754	
Avg. Usage	12%		6%		14%	

Case Study

- Higher standard errors of measurement for CAT forms
- Higher item over exposure rates for CAT items
- + Higher item under exposure rates for CAT
- + In order to support
 CAT, client would have
 to increase the number
 of items in the bank.

CAT vs LOFT Simulations: Test

Length

- + All CAT forms shorter than the LOFT forms
 - Majority under 50 items
- Greater standard error of measurement in CAT forms, i.e., 0.1 vs. 0.3

	Number of	Test Forms
Test Length	LOFT	CAT
(# of Test Items)		
	0.1	<= 0.3
46		136
47		266
48		177
49		75
50		40
51		28
52		16
53		6
54		6
55		4
56		2
57		2
64-81		5
90	763	

CAT vs LOFT Simulations: Test Length

- + All CAT forms
 longer than the
 LOFT forms
- + Greater standard error of measurement in CAT forms, i.e., 0.1 vs. 0.2

To at I a waith	Number of Test Forms			
Test Length (# of Test	LOFT	CAT		
Items)	Precision @ 0.1	Precision @ <= 0.2		
90	763			
101		2		
102		92		
103		193		
104		164		
105		99		
106		66		
107		48		
108		28		
109		14		
110-114		23		
115-265		34		

