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Abstract

Development of adaptive tests used in K-12 settings requires the creation of stable

measurement scales to measure the growth of individual students from one grade to the

next, and to measure change in groups from one year to the next.  Accountability systems

like No Child Left Behind require stable measurement scales so that accountability has

meaning across time.  This study examined the stability of the measurement scales used

with the Measures of Academic Progress. Difficulty estimates for test questions from the

reading and mathematics scales were examined over a period ranging from 7 to 22

years.  Results showed high correlations between item difficulty estimates from the time

at which they where originally calibrated and the current calibration.  The average drift

in item difficulty estimates was less than .01 standard deviations.  The average impact of

change in item difficulty estimates was less than the smallest reported difference on the

score scale for two actual tests.  The findings of the study indicate that an IRT scale can

be stable enough to allow consistent measurement of student achievement.
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Creating a K-12 Adaptive Test: Examining the Stability of Item Parameter

Estimates and Measurement Scales

Developing an adaptive test to measure the achievement of K-12 students is an

interesting challenge.  Among the issues to be addressed are the ages of the students, the

environment in the schools, the technology differences among schools, differences in

curriculum and instruction, and differences in student capabilities as learning occurs.

Approaches to addressing many of these issues have been discussed by Kingsbury and

Houser (1998).

Despite the challenges involved in developing adaptive tests for students, several

have been developed and are broadly used.  Among these are tests developed for modest-

stakes, interim assessment of student performance, such as the Scholastic Reading

Inventory (Scholastic, 2007), STAR Reading and STAR Math (Renaissance Learning,

2010), and the Measures of Academic Progress (MAP:  Northwest Evaluation

Association, 2009).  Others have been developed to meet the higher-stakes needs of the

No Child Left Behind legislation (NCLB, 2002) such as the Oregon Assessment of

Knowledge and Skill (OAKS: Oregon Department of Education, 2010) and the Delaware

Comprehensive Assessment System (DCAS: Delaware Department of Education, 2011).

This study will focus on the MAP system.  This system includes approximately

600 operational adaptive tests, including reading, mathematics, language, and science

tests designed to align with content standards for each state.  It uses measurement scales

that were originally developed in the 1980s, and uses thousands of test questions that

have been added continually from that time to the present.
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All K-12 adaptive achievement tests have required the creation and maintenance

of a measurement scale that provides consistent meaning to student scores across years.

In each of the operational tests mentioned above, Item Response Theory (IRT:  Lord &

Novick, 1968; Lord, 1980) has been used to create the measurement scales.  IRT allows

the development of measurement scales that support normative and criterion-referenced

interpretation.  It also can provide a scale that may be stable across tests and time, if the

assumptions of the model are met.

IRT derives part of its appeal from the fact that it allows the creation of

measurement scales that are independent of the particular sample of individuals or test

questions used to create the scales, and invariant when applied to particular groups of

individuals within the population of interest.  Lord and Novick (1968, pp 360) describe

these properties in this manner:

“Because of its definition, the item characteristic function necessarily

remains invariant from one group of examinees to the next, at least among

those groups used in defining the complete latent space.  This means that

any parameter describing the item characteristic function is an invariant

item parameter.”

This invariance property is exceptionally valuable, because it provides us with the

capacity to build measurement scales that can be expected to maintain their measurement

characteristics even though we modify test forms or implement an adaptive test.  The

most direct application of the invariance property is seen in the development of item

banks using IRT (Vale, 1986; van der Linden, 1986).
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In practice, IRT item parameter estimates will not be invariant.  Estimates will

vary due to a number of factors that have been researched fairly extensively in the past.

These factors include sampling fluctuation (Swaminathan & Gifford, 1983), departures

from unidimensionality (Bejar, 1980), and other characteristics of the calibration design

such as item context (Yen, 1980).  To make matters more complex, the type of test used

to create item parameter estimates and the algorithm used to compute the estimates will

also influence the stability of the item parameter estimates (Ban, Hanson, Wang, Yi, &

Harris, 2001).  All of these factors that may affect the accuracy of item parameter

estimates suggest that we should be cautious in relying on the invariance property of IRT

in practical settings without verification.

As we add items to an item bank, these factors may cause long-term drift in item

parameter estimates and trait level estimates for test takers.  For instance, a small

departure from unidimensionality may make a group of items that are being added to an

item bank appear slightly easier than they actually are.  This will probably have little

impact in the first year that the items are used operationally.  However, using these items

to facilitate calibration of new field test items may cause the new field-test items to have

difficulty estimates that are slightly more biased cumulatively.  Over the course of several

years, this could cause the entire scale to drift, reducing our ability to make long-term

statements about student performance.

This study investigates the qualities of stability in the scales that are used for

measurement within the MAP system.  Specifically, the study examines the extent to

which IRT difficulty estimates remain constant over a prolonged period of time.  In

addition, the study examines whether and to what extent changes in item difficulty
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estimates might influence student scores.  This study follows from scale stability studies

that have been done in the past.

Previous studies of scale stability

Even though long-term scale stability is imperative to our ability to observe

patterns of growth across time, few studies have examined the long-term stability of IRT

item parameter estimates.  Two studies that have investigated the issue were conducted

by Bock, Muraki, and Pfeiffenberger (1988) and by Sykes and Fitzpatrick (1992).

Bock et al. (1988) investigated the stability of the item parameter estimates in the

3-parameter logistic IRT model from the College Board Physics Achievement Test over a

period of ten years using an ANOVA design and looking for a two-way interaction

between items and occasions.  The authors found that there was a statistically significant

drift in item difficulty across time.  The authors interpreted the drift as being due to

changes in physics instruction across the time period under investigation.  The authors

performed a similar analysis of the College Board English Achievement Test, and found

no evidence of drift.  Since the focus of this study was on the development of a statistical

model to allow for drift, rather than on the drift itself, the authors did not discuss the

impact of the observed drift on test scores.

Sykes and Fitzpatrick (1992) investigated the stability of 1-parameter logistic item

parameter estimates for 285 items from a professional licensure test administered over a

period of five years.  This study found drift in item difficulty parameter estimates that

was directional, with items being estimated to be more difficult across time.  When the

investigators examined the source of the drift, it did not seem to be associated with item

position or item type.  As in the previous study, the authors hypothesized that the change
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in difficulty estimates was associated with changes in curricular emphasis.  Since the

emphasis in this study was on the covariates of drift, the authors didn’t discuss the

magnitude of change in candidate scores that might be caused by drift in item difficulty

estimates.

The current study extends this earlier work in several ways.  First, it investigates

stability of item parameter estimates in two large item banks rather than a set of items

used in a single test.  Second, it uses measurement scales that have been designed to

measure student growth across time, rather than tests designed to be taken only once.

Third, it uses a longer elapsed time since initial calibration, ranging from 7 to 22 years.

Fourth, it attempts to estimate the amount of impact that item parameter drift might have

on student scores.  Primary questions to be addressed in this study are

1) How much drift in item parameter estimates is seen in item calibrations separated

by as much as 22 years?

2) Is the magnitude of item-parameter drift associated with the elapsed time since the

original item calibration?

3) What impact does this observed drift have on trait level estimates for test takers?

The stability of measurement scales may be viewed through two lenses.  Using

the first lens, we may investigate whether individual items have changes in their

difficulty estimates across time.  If there is more change (drift) than expected due to

sampling variability, we may identify this as a problem with the invariance assumption.

Using the second lens, we may ask what impact any identified drift may have on the test
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scores from our assessments and what impact the drift may have on decisions that are

made as a result of the assessments.  The questions asked in this study allow us to

investigate the issue through both lenses.

It should be noted that this study is not an analysis of calibration procedures.  It is

fairly clear that procedures for calibration have improved over the 22 years encompassed

by this study.  The question this study addresses is whether calibration estimates change

as a function of time, given the same calibration procedure.

 The Measurement Scales

The measurement scales used in this study are the reading and mathematics scales

developed by the Northwest Evaluation Association.  These scales, known as Rasch Unit

(RIT) scales, are associated with large item banks that are used to develop achievement

tests for use in a variety of school districts.  The one-parameter logistic (1PL) IRT model

(Wright, 1977) was used to create and maintain the underlying measurement scales used

with these banks.  The RIT scales are linear transformations of the θ scale, originally

defined with a mean of 200 and a standard deviation of 10.  Over the course of time, the

mean performance level and standard deviation of student performance has changed, but

the relationship between the RIT scale and the skills needed to obtain a given RIT score

have remained constant.

Since the 1970s, thousands of items have been added to these item banks.  Each

item has been connected to the original measurement scale through the use of IRT

procedures and systematic measurement practices (Ingebo, 1997).  Each item has been

connected to the original measurement scale through the use of IRT procedures and

systematic calibration design.
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These measurement scales are used to develop adaptive tests and to measure

individual student growth.  Since both of these activities depend to a great extent on the

item parameter estimates, it is crucial that the invariance assumption hold in this

application.  While some variability in item parameter estimates is expected, too much

variability could cause growth measurement to be quite problematic.  Growth is a

difficult quantity to measure under the best conditions, so a stable scale is a prerequisite

to maintaining accuracy in growth measures.

Method

Items

There were 3,091 mathematics items and 1,728 reading items administered to

students from grades 2 to 10 in 10 school districts from 7 different states as a part of their

districtwide assessment programs in the 1999-2000 school year.  Any particular student

took approximately 50 mathematics items and 40 reading items.  All items were multiple-

choice, with original item difficulty estimates that were obtained at least 7 years prior to

the study.  Approximately 320 mathematics test forms and 160 reading test forms were

used in the study.  Over 100,000 student test events were used for the study.

Tests

The items were administered within the context of an achievement level test

(Kingsbury & Houser, 1997).  An achievement level test is a paper-and-pencil test that

has approximately seven different forms (levels) designed to differ in difficulty.  Students

are administered a particular form chosen for them individually based on past test scores

or using scores from a routing test.  This design is similar to a two-stage adaptive test
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(Lord, 1971) which uses past information in lieu of a first stage.  The original difficulty

estimates (described below) were used for test design and scoring.

Any individual student took approximately 50 mathematics items or

approximately 40 reading items.  Since different achievement level tests were used in the

different school districts involved in this study, any individual item was seen by only a

small sample of the students involved.  The combination of all test forms across all

school districts and grades resulted in the sparse data matrix that was used for calibrating

all of the items in the study.

Original Item Difficulty Estimates

The original IRT item difficulty estimates for all of these items were created

between 1977 and 1993.  The mean time between the original calibration and the new

calibration was 16 years and 1 month.  The original item difficulty estimates were

obtained using a marginal maximum-likelihood calibration procedure (Houser,

Hathaway, & Ingebo, 1978).

New Item Difficulty Estimates

The new item difficulty estimates were created using the data collected in the

1999-2000 school year.  Since few students took the same items and no student took a

very large percentage of the items, the calibration procedure used was a procedure

designed for use with adaptive tests and other sparse data structures (Houser, Kingsbury,

& Harris, 1997).  This procedure was used because it is the direct analog of the marginal

maximum-likelihood calibration procedure originally used to calibrate the items.

After elimination of items with very small samples, 2,359 items were available for

use in mathematics, and 1,392 items were available in reading.  Calibration sample sizes
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for these items ranged from 300 students to over 10,000 students. A minimum student

sample size of 300 was established to correspond to the minimum sample size that was

allowed in the original calibration procedure.

Analysis

While there are a variety of statistical tools available for identifying parameter

estimate drift (see Donoghue & Isham, 1998), the use of the 1PL model simplifies

matters substantially. In this study, simple differences between original and new

difficulty estimates were used. Two analyses were conducted for each measurement scale

in the study.

Scale drift analysis.  The scale drift analysis included several aspects.  First,

correlations between the new and original item difficulty estimates were calculated and

compared to correlations seen in other studies using the same measurement scales.  Next,

frequency distributions of the differences between the original item difficulty estimates

and the new item difficulty estimates were calculated.  These allowed the examination of

the variability in parameter estimates.  Bias and mean absolute differences were also

calculated and compared to standard deviations of student performance to begin to

identify the impact of parameter drift.  Finally, item parameter estimate differences were

examined as a function of the original calibration date to identify whether the elapsed

time between the two calibrations contributed to observed drift.  This last analysis used a

subset of the available items (2,204 items in mathematics and 1,253 items in reading)

because some items were originally calibrated across several testing seasons.

Impact analysis.  A second method of analyzing the effect of change in

calibrations over time is to ask whether that change has a noticeable impact on students’
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scores.  In this analysis two representative test forms used in the study were chosen as

example tests.  The two forms were middle-difficulty forms used in the fifth grade in a

suburban school district in Indiana.  For each of these forms two raw-score-to-RIT

scoring tables were created, one using the original parameter estimates and one using the

new item parameter estimates (for the 1PL IRT model, a particular number-correct score

is associated with a single scale score, dependent only on the item parameter estimates).

The two scoring tables were then compared to identify the maximum difference caused

by using the new item parameter estimates.  By comparing the scale scores obtained from

the two sets of calibrations for a particular raw score, we can identify how much a

particular student’s test score would have changed as a result of the scale drift.

Results

Scale Drift Analysis

The observed correlations between the original and new item difficulties estimates

were 0.967 in mathematics and 0.976 in reading.  While these correlations are close to

unity, it is useful to compare them to correlations obtained in other studies using the same

measurement scales.  Ingebo (1997) described a series of experiments from the 1970s in

which multiple, concurrent samples were drawn to calibrate a set of items from these

scales, to identify the consistency of the calibrations.  In those studies, the correlations of

mathematics difficulty estimates across samples ranged from 0.95 to 0.99, and the

correlations for reading items ranged from 0.96 to 0.99.  The results from the current

study mimic those from the studies in which the samples were drawn concurrently.

Although the correlations provide some evidence of stability, they do not provide

information about the differences observed on an item-by-item level.  Figures 1 and 2
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show the frequency distributions of the differences observed subtracting the new

calibration of item difficulty from the original calibration for each item.  It can be seen

from these figures that the distributions are fairly symmetric around a difference of zero.

It can further be seen that few items have difficulty differences of more than ten RIT

points (approximately one θ unit).  The distribution of differences in mathematics has

items reaching further from zero than reading, but it is useful to remember that the item

sample in mathematics (N = 2,359) is nearly twice as large as the sample in reading (N =

1,392).  Due to this discrepancy in sample sizes, we would expect to see more extreme

differences in observing the mathematics items.

Figure 1.  Frequency of mathematics items as a function of the difference between the

original item difficulty estimate and the new item difficulty estimate on the RIT scale

(rounded to the nearest integer).
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Figure 2.  Frequency of reading items as a function of the difference between the original

item difficulty estimate and the new item difficulty estimate on the RIT scale (rounded to

the nearest integer).

Figures 3 and 4 show the relationship between the original item difficulty

estimates and the new difficulty estimates for each item in each subject area.  The

relationships appear visually linear, and correspond well to the superimposed line of

identity.  The figures show no evidence of drift associated with the difficulty of the items,

and give no indication of a non-linear trend in the item calibrations.  It can be seen by a

comparison of these two figures that the relationship between the original calibrations

and the new calibrations for reading is slightly more consistent than that for mathematics.
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Part of this visual difference is again due to the larger number of items in the

mathematics comparison, but it is also due to the slightly higher correlation seen in the

reading results.

 Figure 3.  Relationship of original and new item difficulty estimates on the RIT scale for

2,359 items in mathematics with superimposed identity line (r = 0.967).
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 Figure 4.  Relationship of original and new item difficulty estimates on the RIT scale for

1,392 items in reading with superimposed identity line (r = 0.976).

The directional drift (bias or average difference) in item difficulty estimates was -

0.11 RIT points in reading and -0.17 RIT points in mathematics.  To put this difference in

context, the standard deviation of students’ scores in spring of sixth grade in the most

recent norming study done using these measurement scales (NWEA, 2008) was 14.0 RIT

points in reading and 15.9 RIT points in mathematics.  The drift that has occurred in the

scale over the 16.1 years of elapsed time in the studied interval has had an impact of

approximately 0.01 standard deviations on the mean item difficulty estimate.
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The average absolute difference in parameter estimates was 3.29 RIT points in

reading and 4.53 RIT points in mathematics.  The median absolute difference was 3.0

RIT points in reading and 4.0 points in mathematics.  As expected, this difference was

larger than the directional drift, but still less than one-third of a standard deviation.

Given the small values for directional drift, we would expect these differences to balance

out in a test of reasonable length.  This assumption will be investigated more completely

in the impact analysis below.

An additional question of interest is the relationship between the length of time

since the original calibration and the difference in item difficulty estimates.  Figures 5

and 6 show the difference in item difficulty estimates as a function of the initial

calibration date.  Two aspects of these figures are worth noting.  First, there was no

noticeable directional impact of elapsed time on difficulty estimates.  This indicates that

no easily observable directional drift took place in the scale values.  Second, the

variability of new difficulty estimates around initial estimates did not seem to vary

systematically as a function of the time since original calibration.  This indicates that the

variability seen was a function of elements of the calibration design that is not influenced

by the time since first calibration.
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 Figure 5.   Differences between original RIT difficulty estimates and new RIT difficulty

estimates as a function of initial date of calibration in mathematics.
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Figure 6.  Differences between original RIT difficulty estimates and new RIT difficulty

estimates as a function of initial date of calibration in reading.

Impact Analysis

Figures 7 and 8 show the RIT scores obtained from each number correct score for

original and new difficulty estimates.  The figures show clearly that the scores from the

two different sets of item difficulty values are quite small.  The differences in the two sets

of scores are difficult to discern because they are so similar.
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Figure 7.  RIT scores as a function of obtained number correct score calculated using

original and new mathematics difficulty estimates.
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Figure 8.  RIT scores as a function of obtained number correct score calculated using

original and new reading difficulty estimates.

For the mathematics test, the maximum difference that occurred was 1.1 RIT

points and the average magnitude of difference was less than 0.5 RIT points.  For the

reading test, the maximum observed difference was again 1.1 RIT points, and the average

magnitude of difference was 0.7 RIT points.  Since the smallest observable difference

between two RIT scores is 1 RIT point, these differences are small enough to be rarely

observable.  Given a typical distribution of RIT scores, the difference would be less than

1.0 RIT point in 99 of 100 cases.  Since the standard error of a score on one or these tests
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would be approximately 4.0 RIT points, the impact of the change in calibrations would

not be expected to change instructional decisions.

Discussion and Conclusions

Over the past decade, use of adaptive testing to measure student achievement has

exploded. Technology available in the classroom has combined with the need for

additional measurement for accountability and student intervention to increase demand.

At the same time, operational systems have increased in availability.  It seems that the

questions that need to be answered in the next decade are shifting from operational

capacity to the quality of information that the systems provide and the connections to

external referents that the systems provide.  This study is a step in the direction of

discussing the quality of scores provided from the systems.

Two major conclusions from the study are as follows:

1) There was no substantial drift in item difficulty estimates across the timeframe

of this study, and no trend was seen in changes in difficulty estimates as a

function of time since initial calibration.

2) The largest observed change in student scores moving from the original

calibrations to the new calibrations was 1.1 RIT points, with over 99% of

expected changes being less that 1.0 RIT point.

While the overall conclusion of the study is that the measurement scales examined

are stable across time, some individual items fluctuated noticeably from their original

calibrations.  This suggests the need for ongoing calibration analysis.  Even with a fairly

stable scale, individual items may have difficulties that vary across time.  A follow on

study will investigate the characteristics of these highly variable items.  This study should
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enable us to identify whether the large changes in difficulty for a small number of items

are possibly due to specific features of certain items or whether they might be due to

changes in instruction that have reduced (or increased) a student’s opportunity to learn

the content in the question.  Examples of items that might experience such fluctuation

include the following:

• An example of change specific to the item would be an item asking for a

definition of the word “radical” which has had three most common definitions

since the early 1980s.

• An example of change related to opportunity to learn might be seen in an item

asking about the characteristics of a retro-virus.  In the late 1970’s only college-

level biology students would have been introduced to the concept, but now it is

standard content in most high school biology courses.

Building a stable measurement scale is as much an exercise in engineering as it is

an exercise in calibration.  The measurement scales under consideration here were

originally designed using a four-square design (Wright, 1977) with multiple cross links

within and across student grades.  It is expected that this original development has

contributed to the ongoing stability of the measurement scales studied here.  Therefore,

while this study has indicated that stable measurement scales can be created in practice, it

does not suggest that the use of IRT calibration alone will assure scale stability.

In public education, there is ongoing debate about the quality of schools.  One

overlooked element that causes the debate to continue is the inconsistent nature of much

achievement information.  Different tests are used to measure student achievement in
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different grades in many locations.  If there isn’t a consistent measurement scale linking

these tests, comparison of performance across grades is difficult.  In many cases, score

equating is used to allow comparison from one year to another.  While this is a useful

statistical technique, it isn’t designed to create stable measurement scales.

A stable measurement scale allows the development of curriculum-referenced

interpretation of test scores.  For instance, with the mathematics RIT scale, a student who

was able to complete two-digit addition question correctly would obtain the same score in

the year 2002 that they would have obtained in 1980.  With this development, changes in

test scores can be related directly to changes in student capabilities.  In turn, this will

allow the identification of positive and negative trends in education as they happen.

The procedures used in creating the measurement scales examined in this study

have been successful in creating stability.  This is a requirement for good measurement

and even more important if we are planning to measure change in a school or a nation

across time.  The results of this study indicate that we can create measurement scales that

are meaningful not only for short-term comparisons, but for long-term studies as well.
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